
1

TCGRID 3-D Grid Generator for Turbomachinery
User’s Manual and Documentation
Version 206, Dec., 1999

Dr. Rodrick V. Chima
NASA Glenn Research Center, MS 5-10
 21000 Brookpark Road
Cleveland, Ohio 44135 USA

phone: 216-433-5919
fax: 216-433-5802
email: fsrod@grc.nasa.gov
internet: http://www.grc.nasa.gov/WWW/5810/webpage/rvc.htm

Introduction
TCGRID (Turbomachinery C-GRID) is a three-dimensional grid generation code for turbomachinery blades. The code

can generate single block grids that are compatible with the RVC3D code and multiblock grids that are compatible with the
SWIFT code. Single-block grids can be either C-type or H-type, and can be for linear cascades or annular blade rows. Multi-
block grids must use a C-type grid around the blade, and can add an H-grid in the inlet region and O-grids in the hub or tip
clearance regions.

A brief description of TCGRID and an example of a compressor grid is given in (1). Examples of turbine grids generated
with TCGRID can be found in (2). Figures 1–3 here show examples of a multiblock grid for a transonic compressor rotor
(NASA rotor 37) and are used to describe the input variables later.

All geometry manipulation in TCGRID is done using parametric cubic splines, so the code can handle axial, mixed, and
centrifugal flow machines. The input blade geometry can be translated, rescaled, and flipped tangentially, and full control of
spacing along the blade surface is provided. Blade-to-blade grids are generated using an efficient elliptic solver that gives con-
trol of spacing and angles at the blade and outer periodic boundary. Grids are reclustered spanwise with control over spacing at
the hub, casing, and clearance regions.

TCGRID is written completely in FORTRAN and runs as a quick batch job on most workstations or mainframe comput-
ers. It has been run on a PC. Code input is supplied as an ASCII dataset, with grid parameters specified as namelist input. Hub
and tip geometry are specified as coordinate pairs, as are the inlet and exit boundary locations. Blade shapes may be specified
in MERIDL format, Crouse-Tweedt design code format, or specified directly by the user as coordinate triplets. Some printed
output is provided. No graphical output is provided, but grid files can be read directly and plotted using the public domain CFD
visualization codes PLOT3D and FAST, or the commercial codes FIELDVIEW and TECPOT.

This documentation briefly describes how the TCGRID code works. Instructions for dimensioning, compiling, and run-
ning TCGRID are given for Silicon Graphics (SGI) workstations and Cray mainframes. The namelist input variables and the
hub, tip, and blade input are described in detail. Finally, an outline of the code structure and the output file format is given.

How TCGRID Works
TCGRID is based on an old, two-dimensional version of the Steger/Sorenson GRAPE code (5, 6). The GRAPE code is

used to generate blade-to-blade grids on several surfaces of revolution cutting through the three-dimensional blade. The indi-
vidual blade-to-blade grids are stacked and reclustered spanwise to form the 3-D grid. Additional inlet or clearance blocks are
then generated algebraically. An outline of the code structure and output files is given later in the section entitled TCGRID
Code Structure. Details of the code are discussed below.

2

Hub and casing geometries are input as arrays of (z,r) coordinates. Blade geometries are input as arrays of (z,r,θ) coordi-
nates. Several blade input formats are supported.

The surfaces of revolution are defined by a coarse, two-dimensional meridional grid generated algebraically by connect-
ing corresponding points on the hub and casing. The number of spanwise points should be about the same as the number of
input blade sections. The meridional grid is usually equally-spaced spanwise to give a smooth spline fit when reclustering later.
However; for blades with fillets at the hub or casing, the meridional grid can be generated with approximately the same span-
wise clustering as the input blade sections.

The input blade sections may overlap or be inside the hub and casing geometry, and will not generally lie along the merid-
ional grid. For that reason the input blade sections are intersected with the meridional grid. This is done by finding the intersec-
tion of each streamwise grid line of the meridional grid with each spanwise line connecting corresponding points of each blade
section. The intersection routine is iterative. It uses parametric spline fits of the coordinates and converges very rapidly unless
there is a serious problem with the input.

After the blade has been intersected with the meridional grid, the individual sections are reclustered parametrically by arc
length around the section. The trailing and leading edges are evenly-spaced. The trailing-edge spacing is centered on the first
input point on the section (which must be repeated as the last input point for some input options.) The leading-edge spacing is
centered at some fraction of arc length using the input parameter dsra. If dsra=0, the leading-edge spacing is centered on the
median input point. The blade surfaces are reclustered between the leading and trailing edges using either Hermite polynomi-
als or hyperbolic tangent clustering.

The blade-to-blade grids are generated next using the GRAPE code. The GRAPE code is strictly two-dimensional, so the
three-dimensional blade sections must be mapped to a two-dimensional coordinate system. Here m is a meridional
coordinate defined by . m is calculated and stored when the blades are intersected with the meridional grid.

 is simply the mean radius.
The GRAPE code requires the specification of an inner and outer boundary. For a C-grid the mapped blade coordinates

plus a linear wake cut define the inner boundary. A periodic boundary is defined using the mean camber line inside the pas-
sage, a quadratic extension that turns to axial upstream, and a linear extension downstream. The outer boundary is formed by
shifting the periodic boundary a half pitch up and down, and connecting the two segments at the inlet. For an H-grid the blade
is bisected and extended linearly in each direction. The upper half of the blade becomes the inner boundary, and the outer
boundary is formed by shifting the lower half of the blade upward one pitch.

An initial grid is generated by connecting corresponding points on the inner and outer boundaries. Angles and spacings
are specified on the boundaries. The angles are set to give normal grid lines at the blade and inlet, and vertical grid lines at the
periodic boundaries. The spacings are input. The GRAPE code uses an SLOR scheme to solve the Poisson equations, and is
typically iterated 100 iterations. The smoothed grid is then transformed back to cylindrical coordinates.

After blade-to-blade grids have been generated on each meridional surface, they are connected spanwise and reclustered
parametrically by arc length to give the full three-dimensional grid. Separate clustering functions are used in the hub clearance,
blade, and tip clearance regions.

An inlet block may then be generated. The meridional boundaries are defined by the hub and casing boundaries and the H-
grid and C-grid inlet boundaries. Transfinite interpolation (7) is used to fill in the interior points. The resulting meridional grid
is swept tangentially so that it matches the existing points along the inlet of the C-grid.

Hub and tip clearance grid may also be generated. The outer boundary and spacing are defined by the first two C-grid lines
around the blade in the clearance region. Hermite polynomials are used to connect corresponding points across the gap and to
add radial spokes at the leading and trailing edges.

Finally the grid is transformed to Cartesian coordinates and output in PLOT3D multiblock format.

m r θ×,()
dm

2
dz

2
dr

2
+=

r

3

Compiling and Running TCGRID
TCGRID is supplied as a unix script which generates the source and include files and compiles them. The format of the

script file is shown below.

#! /bin/csh -f
cat > tcgrid.f << ‘/eof’
#TCGRID source code goes here
‘/eof’
cat > param << /eof
#blade C- or H-grid size parameters
 parameter(ni=319,nj=46,nk=63,nb=2*ni)
/eof
#etc.
cat > blk01 << /eof
#labeled common blocks
 common/blk01/...
/eof
#etc.
#compiler commands with options go here
/bin/rm -f ...

On a unix platform, edit the script and go to the bottom. Change the parameter statements to values greater than or equal
to the size of the grid to be run. (See Parameter Statements below.) Comment, uncomment, or add compilation commands
appropriate for the computer to be used. (See below for compilation commands for SGI and Cray computers.) Save the script,
set execute permission, and execute it.

On a PC, manually strip out, save, and compile the files between the cat and /eof commands.

Parameter Statements
TCGRID has been set up with parameter statements to make redimensioning simple. The parameter statements and

labeled common blocks are inserted during compilation using Fortran include statements, then deleted. TCGRID checks the
user input against the dimensioning parameters and stops with a fatal error message if the code is not dimensioned properly.
The parameter statements are given below. Typical values are shown, but they may be different in the distribution code.

param - Dimensions of the main C- or H-grid around the blade.
parameter(ni=319,nj=46,nk=63,nb=2*ni)
Must have , , and , where the main grid size is . nb is the number of points
around the blade on an H-grid.

para2 - Dimensions of the 2-D meridional grid and MERIDL blade input arrays.
parameter(mi=50,mm=50)
Must have and , where the 2-D meridional grid size is , and nbs is the
number of input blade sections if MERIDL blade input is used (merid = 2 or 3).

para3 - Dimensions of the hub or tip clearance O-grid block.
parameter(idt=199,jdt=13,kdt=13)
Must have , , and , where the hub grid size is

 and the tip grid size is .
Use if not making a hub or tip clearance grid (igclh = igclt = 0 <default>).

para4 - Dimensions of the inlet H-grid block.
parameter(idi= 64,jdi=35,kdi=63)
Must have , , and , where the inlet grid size is .
Use if not making an inlet grid (igin = 0 <default>).

ni im≥ nj km≥ nk km≥ im jm km, ,()

mi i2d≥ mm max nbs k2d,()≥ i2d k2d,()

idt im 2 itl 1–()–≥ jdt max jmh jmt,()≥ kdt max kmh kmt,()≥
idt jmh kmh, ,() idt jmt kmt, ,()

idt jdt kdt 1= = =

idi imi≥ jdi jmi≥ kdi kmi≥ idi jmi kmi, ,()
idi jdi kdi 1= = =

4

Compiling TCGRID on Silicon Graphics Workstations (IRIX)
The following command will compile TCGRID on SGI power series or Indigo 2 workstations:

#SGI power series compiler
f77 -pfa -O2 -lfpe -o tcgrid tcgrid.f
strip tcgrid

#SGI Indigo 2 compiler
f77 -O2 -sopt -mips2 -lfpe -o tcgrid tcgrid.f
strip tcgrid

Compiling TCGRID on Cray Research Computers (UNICOS)
The following command will compile TCGRID on a Cray Y-MP or C-90:

cf77 -Zc -Wf”-o aggress -M367 -es” -o tcgrid tcgrid.f

The -es option produces a compiler listing, and the -M367 option omits the include statements from the listing.

Running TCGRID
The executable program is run as a standard unix process:

tcgrid < std_input > std_output &

Output Files
The output grid file is written to Fortran unit 1 (fort.1). Debug files are written to fort.11 - fort.19. All grid files are written

as unformatted binary files. They may be linked to file names before running TCGRID,

ln file.xyz fort.1

or renamed after running TCGRID,

mv fort.1 file.xyz

Binary grid files can be used immediately by RVC3D or SWIFT on the same type of computer on which they were gener-
ated. Files generated on an SGI machine can be read into PLOT3D using the read /unformatted option. Files generated on a
Cray can be converted to SGI format in one of two ways:

1. By using the itrans command at NASA Ames or the irisbin command at NASA Lewis to convert the files to SGI binary.
Files converted using itrans or irisbin can be read into PLOT3D using the read /binary option <default>.

itrans file.xyz file.SGI.xyz
irisbin -u -v file.xyz file.SGI.xyz

2. By assigning the files as 32 bit ieee binary files on the Cray before execution. The lower precision does not affect the
accuracy of the solvers. Files written on a Cray while assigned as ieee binary can be used directly by RVC3D or SWIFT on an
SGI machine and can be read into PLOT3D using the read /unformatted option.

assign -F f77 -N ieee fort.1
assign -F f77 -N ieee fort.11
#etc.

5

TCGRID Input
TCGRID input consists of five blocks of namelist input (&nam1 - &nam5), followed by a title, then ASCII hub, tip, and

blade coordinates. All grids require the title, hub, tip, and blade coordinate input, (see Hub, Tip, and Blade Input, page 11).
Many of the namelist variables are initialized by a block data subroutine. Required input variables that are not initialized are
listed below, followed by some comments regarding optional variables. All variables are described in detail in the section enti-
tled Namelist Input.

C-grids
To generate the main C-grid around the blade the following variables are required:

&nam1 - im, jm, km, merid, itl, icap.
To change clustering along the blade surface, along the span, and upstream and downstream of the blade, use iclus, icluss,
 and iclusw, respectively.
 For blades with fillets use iclus2d to cluster the meridional grid using the same spanwise clustering as the input blade
 section.
 For complex flow paths change the meridional grid size using i2d and k2d.

&nam2 - nle, nte, dsle, dste, dswte, dswex, dsmin, dsmax, dshub, dstip.
 Vary the leading- and trailing-edge radii with span using dsthr.
 Move the location of the leading-edge clustering using dsra.

&nam3 - iterm.
For a quick check of a new grid, set iterm=0. Use PLOT3D to check leading- and trailing-edge spacings, surface cluster-

ings, boundary locations, and outer boundary spacings.
If something goes wrong, use the array idbg(9) to generate debug grids to check input coordinates or intermediate grids

(see TCGRID Code Structure, page 14.)
Use aabb and ccdd to move points towards or away from the blade and outer boundary respectively.

&nam4 - Inlet and exit boundary coordinates zbc and rbc are required.
&nam5 - Most variables can defaulted.

Use zscale, tscale, rscale, ztrans, and tflip to manipulate the input blade coordinates.
Use ioble, exl, and exr to change the outer boundary shape.
Use iwakex and jwakex to stretch the wake grid.

H-grids
Most of the parameters required for C-grids are also required for H-grids. In addition, the following indices must be set:

&nam1 - igch=1, imi, itl.
&nam2 - Spacing parameters are interpreted as follows:

dsin = spacing at inlet,
dswex = spacing at exit,
dsle = spacing away from leading edge,
dste = spacing away from trailing edge,
dsmin = spacing at lower blade surface,
dsmax = spacing at upper blade surface.

&nam3 - Algorithm control parameters are interpreted as follows:
aabb and omegpq refer to the lower blade surface,
ccdd and omegrs refer to the upper blade surface.

Linear Cascades
To generate a grid for a linear cascade set the following:

&nam1 - igeom = 1,
&nam2 - gap.

Inlet H-grid
To generate an inlet H-grid, set

&nam1 - igin = 1, imi.
&nam2 - dsin.

Since the inlet H-grid overlaps the blade C-grid, the C-grid must be run to convergence for proper H-grid spacings.
&nam5 - iswift=1

6

Tip Clearance O-grid
To generate a tip clearance grid, set the following:

&nam1 - igclt = 1, jmt, kmt.
&nam2 - cltip, dsclt.

The number of points in the i-direction depends on the C-grid size. Since the clearance O-grid overlaps the blade C-grid,
the C-grid must be run to convergence for proper O-grid spacings.
&nam5 - iswift=1

Hub Clearance O-grid
To generate a hub clearance grid, set the following:

&nam1 - igclh = 1, jmh, kmh.
&nam2 - clhub, dsclh.

The number of points in the i-direction depends on the C-grid size. Since the clearance O-grid overlaps the blade C-grid,
the C-grid must be run to convergence for proper O-grid spacings.
&nam5 - iswift=1

Namelist Input
Defaults are given in angle brackets, <Default=value> or <default.> If no default is given the value MUST be input. Rele-

vant figures are given in parentheses (fig. #.)

&nam1 - Grid Size Parameters
Many grid size parameters are illustrated in figures 1–3.

merid Flag for type of blade input. See Hub, Tip, and Blade Input, page 11, and figure 4 for complete descriptions
of the blade input formats.

= 0 Blade input in stacked sections, (z, r, θ). Completely general, (fig. 4), <default.>

= 1 Blade input in Crouse/Tweedt design code format, (z, r, θ). Similar to above but ordered differently.

= 2 Blade input in MERIDL format, (z, r, θ-upper, θ-lower), (fig. 5).

= 3 Blade input in MERIDL format, (z, r, θ, ∆θ.)

im Grid size in i- (streamwise) direction, (fig. 1).

jm Grid size in j- (blade-to-blade) direction, (fig 1).

km Grid size in k- (spanwise) direction, (fig. 3).

itl i-index of lower trailing-edge point on a C-grid, (fig. 1). Trailing-edge index for an H-grid.

icap Number of i-points on the inlet part of the C-grid, equally-spaced. Remaining points are distributed over the
periodic boundaries. Increase icap to pull points towards inlet, and vice-versa, (fig. 1).

igeom Flag that tells whether grid will be for a linear cascade or an annular blade row.

= 0 Annular blade row <default.>

= 1 Linear cascade.

iclus Flag for type of clustering along the blade surfaces.

= 1 Hyperbolic tangent clustering - smoothest, but may be sparse at blade center if im is small <default.>

= 2 Hermite polynomial clustering - more uniform, but may grow too quickly near leading and trailing
edges. Good for large im.

icluss Same as iclus, but for clustering in the spanwise direction.

iclusw Same as iclus, but for streamwise clustering downstream in the wake, and also upstream for an H-grid.

7

iclus2d Flag that sets spanwise clustering of the 2-D meridional grid.

= 0 2-D grid is equally-spaced.

= 1 2-D grid has approximately the same spanwise clustering as the input blade sections. Use this option if
the input blade sections resolves fillets <default.>

i2d Number of i- (streamwise) points on the coarse meridional grid used to define the passage. Typically 21 for
an axial machine, 41 for a centrifugal. <Default = 21.>

k2d Number of k- (spanwise) points on the coarse meridional grid used to define the passage. Should be roughly
equal to the number of input blade sections nbs. <Default = 11.>

igch Flag to set C- or H-grids. TCGRID can generate single-block H-grids that may be compatible with other
codes.

= 0 C-grid <default.>

= 1 H-grid.

ilh Number of i- (streamwise) points from inlet to leading edge of H-grid, (fig. 1). Only used if igch = 1.

igin Flag to generate inlet H-grid.

= 0 No inlet H-grid <default.>

= 1 Generate inlet H-grid.

imi Number of i- (streamwise) points in the inlet H-grid. Only used if igin = 1.

igclh Flag to generate hub clearance O-grid.

= 0 No hub clearance O-grid <default.>.

= 1 Generate hub clearance O-grid.

jmh Number of j- (blade thickness/2) points in the hub clearance grid. Only used if igclh = 1.

kmh Number of k- (spanwise) points in the tip clearance grid, (fig. 3). Only used if igclh = 1.

igclt Flag to generate tip clearance O-grid.

= 0 No tip clearance O-grid <default.>

= 1 Generate tip clearance O-grid.

jmt Number of j- (blade thickness/2) points in the hub clearance grid. Only used if igclt = 1.

kmt Number of k- (spanwise) points in the tip clearance grid, (fig. 3). Only used if igclt = 1.

&nam2 - Grid Spacing Parameters
All values must be input in the units desired for the final grid. All spacing parameters named “ds…” refer to spacing along

some arc length, and not in a particular coordinate direction. Values suggested as “e.g.” should give a good initial guess but
may need to be modified after examining the initial grid.

nle Number of points equally-spaced around the blade leading edge, typically 15.

nte Number of points equally-spaced around the blade trailing edge, typically 10. Should be an even number.

dsle Spacing around the leading edge at the hub, e.g. .

dste Spacing around the trailing edge at the hub, e.g. .

dswte Spacing away from the trailing edge on the wake cut of C-grid, should be ≈ dste, (fig. 1).

dswex Spacing at exit on wake cut of C-grid, hard to estimate in advance. Should be roughly the spacing along the
periodic boundary, which is roughly the streamwise distance from the inlet to the exit divided by (im-icap)/
2, (fig. 1).

π rle nle⁄⋅

π rte nte⁄⋅

8

dsthr “ds tip-to-hub ratio.” Dsle, dste, and dswte are taken as hub values and are varied linearly with span to this
factor at the tip. Allows the leading edge radius, etc. to increase or decrease (usually decrease) with span.
<Default = 1.>

dsmin Spacing away from the blade, e.g. chord/10,000 for viscous grids, (fig. 1).

dsmax Spacing away from the periodic boundary, e.g. midspan-pitch/jm, (fig. 1).

dsin Spacing away from the inlet of inlet H-grid, (fig. 1). Only used if igclt = 1.

dsra (Pressure surface arc length)/(total surface arc length). Used to locate the center of the leading edge cluster-
ing on the blade. The clustering is centered about dsra x (total surface arc length.) Typical values are 0.5 for
symmetrical blades, about 0.49 for compressor blades, and about 0.45 for highly-cambered turbine blades.

= 0 TCGRID assumes that there are the same number of blade input coordinates on each surface and clusters
about the median input point <default.>

gap Blade row pitch for a linear cascade. Only used if igeom = 1. The pitch is set by nblade if igeom = 0.
<Default = 1.>

rcorn Radius for the front corner of the C-grid, (fig. 1). Can be 0., but the inlet is smoother with rcorn ≈ pitch/8.
<Default = 0. Reset to 0. if igin = 1.>

dshub Spanwise-spacing at the hub, e.g. span/10,000 for viscous grids, (fig. 3).

dsclh Spanwise-spacing at the blade edge nearest the hub, (fig. 3). Only used if clhub > 0. <Default = dshub.>

clhub Hub clearance, (fig. 3). Used if igclh = 1, or to cluster hub grid for a simple periodicity clearance model.

= 0 Grid is stretched continuously away from the hub <default.>

> 0 Grid is clustered near the hub using dshub, clhub, and dsclh.

dstip Spanwise-spacing at the tip, e.g. span/10,000 for viscous grid. Should be ≈ dshub, (fig. 3).

dsclt Spanwise-spacing at the edge of the blade near the tip, (fig. 3). Only used if cltip > 0. <Default = dstip.>

cltip Tip clearance, (fig. 3). Used if igclt = 1, or to cluster tip grid for a simple periodicity clearance model.

= 0 Grid is stretched continuously away from the tip <default.>

> 0 Grid is clustered near the tip using dstip, cltip, and dsclt.

&nam3 -Algorithm Parameters
See Sorenson’s GRAPE code documentation (5) for more information on algorithm parameters. Most values can be

defaulted.

iterm Number of iterations for elliptic solver, usually 50 – 150. Use iterm=0 to check initial grid spacings, bound-
ary locations, etc. <default=100.>

idbg(9) Integer flag array with nine elements for writing intermediate debug grids to Fortran units 11-19. Useful for
debug, graphics, and possibly for grid generation in itself. For more information see TCGRID Code Struc-
ture, page 14. Available options are given in Table 1 on page 17. <Default = 9*0.>

omega Relaxation factor for the elliptic solver. Acceptable values from 0. to 2. <Default = 1.4.>

omegpq Relaxation factor for the inner boundary forcing functions. Acceptable values from 0. to 2. Set to 0. for a
Laplacian inner boundary. <Default = 0.1.>

omegrs Like omegpq, but for the outer boundary.

aabb Exponent controlling the distance that angles and spacings at the inner boundary propagate into the interior.
Small aabb give large distances but slow convergence, and vice versa. Any value > 0. is acceptable. <Default
= 0.45>

ccdd Like aabb, but for the outer boundary.

9

&nam4 - Boundary Coordinates

zbc(3,2) and rbc(3,2)

Arrays of (z, r) coordinates that define three line segments that act as the upstream H-grid inlet, the blade C-
grid inlet, and the blade C-grid exit. The line segments are intersected with the hub and tip geometry, so the
coordinates need not lie exactly on the hub and tip. Anywhere nearby should work. Figure 2 illustrates the
locations of the boundary coordinate points. The first index indicates the segment and the second index indi-
cates hub or tip. The six points must be entered in the order shown below. The coordinates of the upstream
H-grid inlet may be set to zero if igin = 0.

zbc = z-H-hub-in, z-C-hub-in, z-C-hub-ex, z-H-tip-in, z-C-tip-in, z-C-tip-ex

rbc = r-H-hub-in, r-C-hub-in, r-C-hub-ex, r-H-tip-in, r-C-tip-in, r-C-tip-ex

&nam5 - Miscellaneous Parameters
Most of these parameters can be defaulted.

iswift Output file format flag.

= 0 RVC3D code output – single block, no dummy grid lines <default.>

= 1 SWIFT code output – one or more blocks with dummy grid lines, SWIFT index file written on unit 10.

= 2 ADPAC code output – one or more blocks, no dummy grid lines.

Scaling Parameters
Parameters for rescaling, translating and flipping the input blade coordinates.

zscale Scale factor for blade z-coordinates, <default = 1.>

tscale Scale factor for blade θ-coordinates, <default = 1.>

rscale Scale factor for blade r-coordinates, <default = 1.>

ztrans Translation distance for blade z-coordinates, <default = 0.>

tflip Flag for flipping the blade in the θ-direction and reordering the points.

= 0 Do not flip blade θ-coordinates, <default.>

= 1 Flip blade θ-coordinates.

Outer Boundary Shape Control Parameters

dslap i- (streamwise) spacing at exit of C-grid. If dslap > 0, the grid lines at i = 2 and i = im-1 are repositioned
exactly dslap from the exit, overriding dswex. For multistage machines the next blade row should have
dsmax = dslap to give a perfect overlap of the grids.

exl Controls the shape of the left (upstream) periodic boundary of a C-grid. The boundary starts tangent to the
mean camber line and curves to axial at a rate determined by exl.

> 10 No curvature – the boundary is a linear extension of the mean camber line.

> 1.5 Slow curvature to axial.

= 1.5 Moderate curvature to axial <default.>

< 1.5 Fast curvature to axial.

= 1 Turns the boundary abruptly to axial.

exr Controls the shape of the right (downstream) periodic boundary of a C-grid. The boundary starts tangent to
the mean camber line and curves to axial at a rate determined by exr.

> 10 No curvature – the boundary is a linear extension of the mean camber line <default.>

10

> 1.5 Slow curvature to axial.

= 1.5 Moderate curvature to axial.

< 1.5 Fast curvature to axial.

= 1 Turns the boundary abruptly to axial.

fswake Fractional distance along the downstream periodic boundary between the trailing edge and the grid exit,
where the η-grid lines from the trailing edge (i = itl) intersect the outer boundary, (fig. 1). The default value
of <1.> places the outer boundary point directly above and below the trailing edge point. On some blades
this can cause the η-grid lines to cross the trailing edge To pull the grid lines towards the downstream bound-
ary by setting .

ioble The periodic outer boundary for a C-grid is made up of three segments, an upstream segment, the mean-
camber line between the blades, and a downstream segment. The parameter ioble is an index which deter-
mines where the upstream segment joins the mean camber line. Values can be <11>, 10, 9 … The default
<11> starts the upstream segment at the leading edge. Smaller values move the starting point inside the pas-
sage, which can be useful if upstream part of the C-grid becomes distorted due to stagger, (fig. 1).

iwakex Flag for stretching the outer boundary grid spacing along the wake (i-direction).

= 0 Equally-spaced outer boundary along the wake.

= 1 Stretched outer boundary along the wake, <default.>

jwakex Flag for controlling the η-grid spacing along the trailing edge cut.

= 0 η-grid spacing is dsmin all along the trailing edge cut, <default.>

= 1 η-grid spacing expands from dsmin at the trailing edge to equally-spaced at the exit.

Parameters for Blunt Trailing Edges
TCGRID can now wrap C-type grids around blades with blunt trailing edges like the centrifugal impeller blade shown in

figure 6b or the inlet guide vane shown in figures 6c,d. Blade coordinates may be input in one of two ways depending on the
value of merid.

merid = 0 or 1 (general coordinate input) Blades must be input with an open trailing edge (fig. 6a.)

= 2 or 3 (MERIDL input) Blades are always input with an open trailing edge (fig. 5.) If nbase = 0 a round
trailing edge is added <default.> If nbase > 0 a blunt trailing edge is assumed.

nbase Number of intervals on the blunt trailing edge (fig. 6a.)

ibase Flag controlling the location of the wake cut line with respect to the base of the blade (fig. 6.) To minimize
grid distortion, choose ibase such that the cut leaves the corner with the acute angle. If the base is symmetric
(fig. 6c,d), use ibase = 0.

= +1 Cut line leaves the upper corner of the base.

= 0 Cut line leaves the center of the base <default.>

= -1 Cut line leaves the lower corner of the base.

ibevel Flag for beveling the corner(s) of the base to reduce grid distortion (fig 6c,d.) If ibase = 0 both corners are
beveled. If ibase = 1 the corner opposite the wake cut is beveled.

= 0 No bevel <default.>

= 1 Corner(s) are beveled.

fswake 1.0<

11

Hub, Tip, and Blade Input
Immediately following the namelist input are unformatted reads for a title, the hub and tip coordinates, and the blade coor-

dinates. Unformatted ASCII reads are used throughout.

Title
A title of 80 characters or less is read using the following FORTRAN input statement:

 read *,ititle

ititle An alphanumeric string of 80 characters printed to the output. The character string must be enclosed in sin-
gle quotes.

Hub and Tip Geometry
Hub and tip coordinate arrays as shown in figure 2 are read in as follows:

c read hub & tip geometry
 read(5,*)nph,npt
 read(5,*)(zhub(i),i=1,nph)
 read(5,*)(rhub(i),i=1,nph)
 read(5,*)(ztip(i),i=1,npt)
 read(5,*)(rtip(i),i=1,npt)

nph Number of input hub points, min = 2, max = ni.

npt Number of input tip points, min = 2, max = ni.

zhub,rhub z, r coordinates of the hub.

ztip,rtip z, r coordinates of the tip.

Blade Geometry
The next line of input contains three variables read as follows:

c blade input
 read(5,*)nbs,npb,nblade

where

nbs Number of blade sections, max. = mm.

npb Number of points around the blade, max. = nb.

nblade Number of blades around the wheel.

This is followed by blade coordinates in one of four formats determined by the input value of merid. The coordinates need
not intersect the hub and tip coordinates – they are spline fit if they span the endwalls, or are linearly extrapolated if they do
not, and the intersections are calculated by TCGRID. The four input options and their corresponding Fortran reads are as fol-
lows:

merid = 0 <default>
Blade input in general stacked sections. Cylindrical coordinates starting at the blade trailing edge, wrapping clockwise

around the blade, and repeating the trailing-edge point. Complete definition of the leading- and trailing-edges must be given.
Sections are stacked from hub to tip. Figure 4 shows the ordering of points for merid = 0.

c merid=0: blade input in stacked sections, cyl. coords.
 if(merid.eq.0)then
 do 3 k=1,nbs

12

 read(5,*)(zb(i,k),i=1,npb)
 read(5,*)(yb(i,k),i=1,npb)
 3 read(5,*)(rb(i,k),i=1,npb)
 endif

Here (zb, yb, rb) = (z, θ, r)-coordinates of the blade section.

merid = 1
Blade input in Crouse/Tweedt design code format. See Tweedt’s writeup on design code options. The point ordering

around the blade is the same as for merid = 0, as shown in figure 4, but the points are stacked from tip to hub.

c merid=1: blade input in Crouse/Tweedt design code format
 if(merid.eq.1)then
 read(5,*)zbhub
 do 5 k=nbs,1,-1
 read(5,*)dum
 read(5,*)dum
 read(5,*)(zb(i,k),i=1,npb)
 read(5,*)(yb(i,k),i=1,npb)
 5 read(5,*)(rb(i,k),i=1,npb)
 endif

Again (zb, yb, rb) = (z, θ, r)-coordinates of the blade section.

zbhub A z-translation value added to all blade z-coordinates, to shift them to the same reference as the hub and tip.
Can also be done using namelist variable ztrans.

dum Two dummy records are included before each blade section.

merid = 2 or 3
Blade input in MERIDL format. See Katsanis and McNally’s report on MERIDL (3) for more information on MERIDL

input. Unlike MERIDL, TCGRID can handle purely radial flows without rotating the coordinate system. MERIDL input has
no leading- or trailing-edge definition, but TCGRID will add leading- and trailing-edge circles automatically. Points are input
from leading edge to trailing edge, and from hub to tip.

c merid=2 or 3: blade input in MERIDL format
 if(merid.gt.1)then
 do 20 k=1,nbs
 20 read(5,*)(zbl(i,k),i=1,npb)
 do 22 k=1,nbs
 22 read(5,*)(rbl(i,k),i=1,npb)
 do 24 k=1,nbs
 24 read(5,*)(th1bl(i,k),i=1,npb)
 do 26 k=1,nbs
 26 read(5,*)(th2bl(i,k),i=1,npb)
 endif

merid = 2 (zbl, rbl, th1bl, th2bl)= (z, r, θ-upper-surface, θ-lower-surface) coordinates of the blade section, as shown in
figure 5.

merid = 3 (zbl, rbl, th1bl) = (z, r, θ)-coordinates of the mean-camber-line, ordered like merid = 2 (fig. 5),

th2bl = blade tangential thickness (θ-upper-surface – θ-lower-surface).

13

Grid Output XYZ-File
Grids are stored using standard PLOT3D xyz-file structure. Single block grids can be read with the following

Fortran code:

c read grid coordinates
 read(1)im,jm,km
 read(1)(((x(i,j,k),i=1,im),j=1,jm),k=1,km),
 & (((y(i,j,k),i=1,im),j=1,jm),k=1,km),
 & (((z(i,j,k),i=1,im),j=1,jm),k=1,km)

See PLOT3D documentation or the TCGRID source code for details on using multiblock grids.

14

TCGRID Code Structure
Grids are generated in several sequential steps. Most steps are coded as separate subroutines, many of which can generate

PLOT3D compatible grid files for debugging purposes. The outline below lists the main subroutines of TCGRID in the order
that they are called, describes their function, and describes the debug flag and debug output generated. Indentation implies sub-
routine nesting.

Debug files are requested using the namelist array idbg(9) described below in Table 1. In general, if idbg(n) = 1, a debug
grid file will be generated on Fortran unit n + 10. Grids are in PLOT3D format, may be 2-D or 3-D, and may be in multigrid
format. If there is a problem with TCGRID, set idbg = 9*1 and plot fort.11 – fort.19 in turn. (Some files may not be generated
depending on several input options.) Refer to the outline below to determine at which step the problem occurred.

TCGRID
Main calling program.
Output file: unit 1, 3-D grid, possibly multigrid format.

1. INPUT
Reads the namelist, hub, tip, and blade input. Scales and translates the geometry if desired.
Output file: idbg(1) = 1, unit 11, 3-D blade as input (merid = 0 or 1), or 3-D MERIDL blade after addition of leading-
and trailing-edge circles (merid = 2 or 3).

2. INNER (merid = 0 or 1)
Reclusters points around the blade sections.
Adds points on the base if nbase > 0.

3. MERFIX (merid = 2 or 3)
Converts MERIDL blade sections to GRAPE-type sections.
Adds leading- and trailing-edge circles.
Adds points on the base if nbase > 0.
Reclusters points around the blade sections.
Output file: idbg(2) = 1, unit 12, 3-D multigrid MERIDL blade as input (merid = 2 or 3).

LETE
Computes leading- and trailing-edge circles for the MERIDL blades using the technique described in (4).

4. ADDHT
Adds inlet and exit points to hub and tip arrays.

5. MERIDG
Generates a coarse, equally-spaced meridional grid between the supplied hub and tip.
Output file: idbg(3) = 1, unit 13, 2-D meridional grid between hub and tip.

6. BLADES
Interpolates the blade geometry onto the meridional grid.
Output file: idbg(4) = 1, unit 14, 3-D blade after interpolation onto meridional grid.

7. GRID2D
Generates 2-D blade-to-blade grids along the meridional grid lines in coordinates, where m is the meridi-
onal coordinate defined by and is the mean radius. Uses an old version of the Steger/Sorenson
GRAPE code (refs. 5 and 6).
Output file: idbg(5) = k, unit 15, 2-D blade-to-blade grid on surface k of the meridional grid.

GRELAX
Solves the elliptic grid equations.
DUMGL
Adds dummy grid lines if iswift = 1.

Transforms the coordinates to .
Output file: idbg(6) = 1, unit 16, 3-D grid before spanwise clustering.

m r θ×,()
dm

2
dz

2
dr

2
+= r

m r θ×,() z r θ, ,()

15

8. FILL3D
Reclusters the 2-D grids spanwise using either Hermite polynomials or hyperbolic tangent clustering (ref. 7) to make a
full 3-D grid.

9. GINLET
Generates an algebraic H-grid block upstream of the blade using transfinite interpolation (ref. 7) if requested.
Output file: idbg(7) = 1, unit 17, 3-D inlet H-grid.

10. GTIP
Generates an algebraic O-grid block in the hub or tip-clearance region if requested.
Output file: idbg(8) = 1, unit 18, 3-D tip clearance O-grid.
Output file: idbg(9) = 1, unit 19, 3-D tip clearance O-grid.

11. OSPAN
Prints the inlet, leading edge, trailing edge, and exit coordinates.

12. OUTMG
Transforms to (x,y,z) and writes the grid file on unit 1 in PLOT3D format.
Output file: iswift = 1, unit 10, ASCII index file for use by the SWIFT code.

z r θ, ,()

16

Acknowledgments
Joe Steger and Reece Sorenson developed and supplied the original GRAPE code that serves as the basic grid solver in

TCGRID. Kevin Kirtley developed an early version of TCGRID called GRD3D. Larry Schuman provided the algorithm for
adding leading edge circles to MERIDL blades. Dan Tweedt developed the spline routines used in TCGRID and provided
many helpful comments and suggestions. Dave Miller provided the transfinite interpolation routine used for the upstream grid
block.

References

1. Chima, R. V., “Viscous Three-Dimensional Calculations of Transonic Fan Performance,” in CFD Techniques for Pro-
pulsion Applications, AGARD Conference Proceedings No. CP-510, AGARD, Neuilly-Sur-Seine, France, Feb. 1992,
pp 21-1 to 21-19. Also NASA TM-103800.

2. Chima, R. V., Giel, P. W., and Boyle, R. J., “An Algebraic Turbulence Model for Three-Dimensional Viscous Flows,” in
Engineering Turbulence Modelling and Experiments 2, Rodi, W. and Martelli, F. editors, Elsevier pub. N. Y., 1993, pp.
775-784. Also NASA TM-105931.

3. Katsanis, T., McNally, W. D., “Revised FORTRAN Program for Calculating Velocities and Streamlines on the Hub-
Shroud Midchannel Stream Surface of an Axial-, Radial-, or Mixed-Flow Turbomachine or Annular Duct,” NASA TN
D-8430, Mar. 1977.

4. Schumann, L. F., “FORTRAN Program for Calculating Leading-and Trailing-Edge Geometry of Turbomachine
Blades,” NASA TM X-73679, June, 1977.

5. Sorenson, R. L., “A Computer Program to Generate Two-Dimensional Grids About Airfoils and Other Shapes by Use
of Poisson’s Equation,” NASA TM-81198, 1980.

6. Steger, J. L., and Sorenson, R. L. “Automatic Mesh Point Clustering Near A Boundary in Grid Generation with Elliptic
Partial Differential Equations,” Journal of Computational Physics, Vol.33, No. 3, Dec. 1979, pp.405-410.

7. Thompson, J. F., Warsi, Z. U. A., Mastin, C. W., Numerical Grid Generation Foundations and Applications, North-Hol-
land, N. Y., 1985.

17

i Value Unit Subroutine Grid Size Plot3d Format Grid Description

1 1 11 Input npb, nbs, 1 3d/unf
General blade as input (merid = 0, 1)
MERIDL blade after l.e. & t.e. addition
(merid = 2, 3)

2 1 12 Merfix nbs, npb, 1 3d/unf/mg MERIDL blade as input (merid = 2, 3)

3 1 13 Meridg i2d, k2d 2d/unf 2-D meridional grid between hub and tip

4 1 14 Blades npb, k2d, 1 3d/unf 3-D blade after interpolation onto 2-D grid

5 k 15 Grid2d im, jm, 1 2d/unf 2-D blade-to-blade grid on section k

6 1 16 Grid2d im, km,k2d 3d/unf 3-D rid before spanwise clustering

7 1 17 Ginlet imi, jmi, kmi 3d/unf 3-D inlet H-grid

8 1 18 Gtip imt, jmt, kmt 3d/unf 3-D hub clearance O-grid

9 1 19 Gtip imh,jmh,kmh 3d/unf 3-D tip clearance O-grid

Table 1 —Debug grid files available with idbg options.

18

i=itl

ic
ap

 p
oi

nt
s

rcorn=0

i=im
C

-in
le

t

C
-e

xi
t

z

r θ

i=1

H
-in

le
t i

i=1

dsin

dwte

dswex

ds
m

in
ds

m
ax

j

11

9
7

ex
r =

 1
0

exr=1.5

ex
l=

10

exl=
1.5

i = ilh
i = itl
H
C

1.
0

0.
5

0.
75fsw

ak
e m

ov
es

 th
is

po
int

ioble moves
this point

Figure 1 — (Top) Blade-to-blade H–C grid for a transonic compressor rotor.
(Bottom) TCGRID nomenclature and input variables for blade-to-blade grid.

19

20

(zhub,rhub)

(ztip,rtip)

(zbc,rbc)
1,1

(zbc,rbc)
1,2

(zbc,rbc)
1,3

(zbc,rbc)
2,1

(zbc,rbc)
2,2

(zbc,rbc)
2,3

r

H
-i

n
le

t

C
-i

n
le

t

C
-e

xi
t

o
o

o

o

o

o

o

o

z

Blade

Figure 2 — (Top) Meridional H–C grid for a transonic compressor rotor.
(Bottom) TCGRID nomenclature and input variables for meridional grid.

21

tip

hub

dstip

dshub

dsclt

dsclh

k=1

k=km

k=kmh

k=km+1-kmt
cltip = tip clearance

clhub = hub clearance

Figure 3 — (Top) Tip clearance O–grid for a transonic compressor rotor.
(Bottom) TCGRID nomenclature and input variables for spanwise grid.

22

(zbl,rbl,th1bl) = (z,r,θ)

z

θ

npb

1 2 3 i (zbl,rbl,th2bl)

i

1,npb2
3

z

θ

(zb,yb,rb)
= (z,θ,r)

Figure 5 — Blade coordinate input variables for merid=2.

Figure 4 — Blade coordinate input variables for merid=0 and 1.

23

ibase = +1

ibase = 0

ibase = -1

first input
point

last input
point

n
b
a
se

 in
te

rv
a
ls

Figure 6a — Effect of ibase on location of wake cut. Figure 6b — Centrifugal impeller trailing edge.
ibase = 1, nbase = 8, ibevel = 0.

Figure 6d — Inlet guide vane trailing edge.
ibase = 0, nbase = 8, ibevel = 0.

Figure 6c — Inlet guide vane trailing edge.
ibase = 0, nbase = 8, ibevel = 1.

